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An internal wave in a viscous ocean stratified 
by both salt and heat 
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The propagation of an internal wave in an ocean which is stratified in both tem- 
perature and salinity is considered. It is shown how the effects of viscosity, heat 
conduction and solute diffusion attenuate a cross-wave from an oscillatory dis- 
turbance. Under certain conditions there is no wave solution even though the 
oscillatory frequency is less than the Brunt-Vkiisiila frequency and the fluid is 
stably stratified. 

1. Introduction 
When a body oscillates with a frequency w in a density stratified fluid which 

has a constant natural frequency wo, the inviscid equations show that energy 
propagates along straight lines inclined at the angle sin-l (w/wo) to the horizontal, 
forming a cross-wave. Thomas 8, Stevenson (1972) discuss the effects of viscosity 
on this cross-wave. (The paper will be referred to as I.) It was demonstrated both 
theoretically and experimentally how viscosity increases the width of the wave 
and attenuates the velocities away from the forcing region. The experiments 
were in stratified brine but salt diffusion was neglected in the analysis. 

In  this note it is shown how heat conduction and solute diffusion modify 
the Boussinesq form of the equations in I. It is shown that the omission of salt 
diffusion in the original paper is justified. 

The effect of gradients of two properties and oscillatory instabilities in par- 
ticular have been considered by Veronis (1965, 1968) and Walin (1964) in con- 
vection flows. It is found that the present internal-wave solution breaks down 
under the same conditions as those which produce an oscillatory instability in 
Walin's analysis. 

2. Analysis 

tration, the equation of state takes the form 
For a fluid which is weakly stratified in both temperature and salt concen- 

(Pa -P* )  = YC(C.3 - c*) - Y T ( Z  - T"), (1) 

where p ,  c and T are the density, salt concentra'tion and temperature. yc and 
yT are constants, the subscript s denotes properties within the wave and the 
superscript * background conditions at the origin of the co-ordinate system 
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where 

Displacement 
envelooe 

6. Phase 

1 -Constant 

FIUURE 1. The oo-ordinate system. 

Ox‘y’ (see figure 1). The co-ordinate system is fixed relative to the background 
fluid with x‘ along one arm of the cross and y’ in the direction of the phase velocity 
of the inviscid solution. 0 is the angle between the Ox‘ axis and the horizontal, 

Perturbation variables are defined as p‘ = ps -po, c‘ = C, - co and T’ = T, - To, 
where the subscript 0 refers to the unperturbed background conditions. u’ and 
w‘ are the velocity components and t’ is the time. The equations of continuity, 
momentum and diffusion are written within the Boussinesq approximation as 

(2) 

(3) 

aui awl -+- = 0, 
axi ayl 

DU’ I apf P’ -=--- + q , V W  - - g sin 6, 
Dt’ Po ax’ PO 

D - 8  ’ a  a a2 a 2  
-+u -’+v’-’, v2 = -+- ot’ = at’ ax ay axf2 ayi2’ 

P’ + yo vzV’ + - cos e, DV‘ I ap’ 
Dt’ posy' PO 
- = __-  

3 = XTV2T,+@, 
Dt’ 
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v is the kinematic viscosity, g is the acceleration due to gravity, CD is the viscous 
dissipation and xr and xc are the heat and salt diffusion coefficients respectively. 

The density gradient parameter p is -pol (dpo/dzo), where xo is measured 
vertically upwards (see figure I), and the temperature and salt concentration 
gradients are given by dT0/dzo = PTp*/yT and dco/dzo = -p,p*/y,. The Brunt- 
V&is&lii frequency wo is (Pg)+. 

Dimensionless variables (undashed) are defined as follows: x' = @sin e)-l, 
y' = ay(psin8)-1,  p' = app*, t' = t(wosin8)-1, U' = auqucl, V' = aavgu;I, 
p' = aapp*g(p tan q-l, T' = aTp*y,l, c' = - acp*y;l and a3 = wgv* tan 6 sin 8/ 
292. a is an amplitude coefficient which is constant. 

Within the Boussinesq approximation we can consider a linear density gradient 
with P = PT +PC. As the analysis now follows that in I it will merely be outlined. 
T t  is assumed that a < a < 1, so that (1)-(6) reduce to 

p = - (T+c) ,  (7)  
au av -+--0, 
ax ay 

a% aP a2u 
- =  --a - cot 8-p  + 2acot 8- + O(U) +0(012) ,  at ax aY2 

It is assumed that the perturbations have a time dependency e-it and that 
they can be expanded as u = ul+au,, . .., v = v,+av, ..., p = pl+ap, ..., etc. 
These expansions are substituted into the above equations and terms of like order 
are equated. The resulting equation for p l  is 

where X = K X ;  K = [I + (xTPT/v*B) + (xC/3,/v*B)]. 
Equation (13) is of the same form as that in I and the solution is 

p 1  = Re ( X a f ( 7 )  e-it), 

Thus the Boussinesq form of the solution in I can accommodate the effects of 
salinity and thermal stratification. 

Walin (1964) looked a t  the stability of disturbances in a viscous fluid stratified 
by both heat and salt and found that there is an oscillatory mode of instability 
for some wavenumbers whenever K < 0. This is also the limit in the present analy- 
sis: no waves of this type exist when K < 0. When K -+ 0 the wave width ap- 
proaches zero. 
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If there is no temperature gradient in the fluid then J3, = /3 and K = [ 1 + (x , /Y*)] .  

and therefore within the accuracy of the approximations For brinex,/u* is O( 
K = 1 as in I. If there is no solute gradient in the fluid then PT = ,8 and 

K = [ I+  ( X T , / Y * ) I .  

For water x&* is O( 10-l). Thus, if we compare a wave in a thermally stratified 
fluid with one in a salinity stratified fluid having the same density gradient 
then the wave width is slightly larger and the velocities decay more rapidly in 
the thermal wave. 

The width of a wave is given by ~ ( x ’ u * K / ~ w ,  cos O)* and therefore the weaker 
the stratification the wider the wave. However a decrease of two orders of magni- 
tude in the density gradient only doubles the wave width at a particular x’ 
position. 

Finally, the same approach was used for the vertical wave which develops 
above and below a body oscillating with the Brunt-Vaisiilii frequency. As ex- 
pected, heat conduction and solute diffusion modify the theory of Gordon & 
Stevenson (1972) and it is found that the dimensionless distance x along the wave 
is again changed to KX. 
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